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In natural behavior, animals have access to multiple sources of
information, but only a few of these sources are relevant for
learning and actions. Beyond choosing an appropriate action,
making good decisions entails the ability to choose the relevant
information, but fundamental questions remain about the brain’s
information sampling policies. Recent studies described the neural
correlates of seeking information about a reward, but it remains
unknown whether, and how, neurons encode choices of instrumen-
tal information, in contexts in which the information guides sub-
sequent actions. Here we show that parietal cortical neurons
involved in oculomotor decisions encode, before an information
sampling saccade, the reduction in uncertainty that the saccade is
expected to bring for a subsequent action. These responses were
distinct from the neurons’ visual and saccadic modulations and from
signals of expected reward or reward prediction errors. Therefore,
even in an instrumental context when information and reward
gains are closely correlated, individual cells encode decision vari-
ables that are based on informational factors and can guide the
active sampling of action-relevant cues.
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In natural behavior, animals have access to multiple sources of
information, but few of these sources are relevant for learning

or action. Making good decisions therefore entails not only the
selection of the ultimate action but, more primarily, the decision
of which source of information to sample. Decisions about in-
formation sampling are central for tasks as diverse as making a
medical diagnosis (which is the best test to prescribe?), making
categorization decisions (which is the most informative feature?)
(1, 2), and guiding skilled actions (what should I keep my eyes on
while driving?). Despite the ubiquity and significance of active
sampling mechanisms, few studies have been devoted to un-
derstanding these mechanisms and their importance for decision
theories. Evidence accumulation has been extensively examined in
decision research (3) but has been portrayed as a passive process,
in the sense that decision makers rely on predetermined (experi-
menter selected) sources of information but cannot themselves
determine which source to consult to guide a future action.
Recent studies begin to shed light on this question by showing

that animals (including pigeons, monkeys, and humans) prefer to
observe cues that are predictive rather than nonpredictive about
a future reward, and that the value of informative cues is enco-
ded in the orbital frontal cortex and midbrain dopamine (DA)
cells (4, 5). These investigations, however, have been limited to
noninstrumental contexts in which animals seek to obtain infor-
mation about a reward merely in order to know, but cannot act
based on the information. Very little is known about the much
more common scenario in which animals sample instrumental
information to make decisions and guide future actions (6).
Understanding instrumental sampling poses two important

challenges beyond those arising in noninstrumental contexts. First,
because instrumental sampling is, by definition, coordinated with
actions, understanding it requires developing sequential paradigms
in which an individual first decides which information to sample,
and then decides which action to take based on that information.

Sequential tasks of this kind have been used in human observers
(e.g., refs. 2 and 7–10) but are largely eschewed in work with ex-
perimental animals where decision-making is studied with single-
step tasks (11) (see ref. 12 for a notable exception).
Second, in an instrumental context, a more reliable cue, by

definition, supports a better choice of actions, strongly correlating
gains in reward with gains in information. Behavioral and com-
putational studies suggest that a full explanation of instrumental
sampling behaviors requires considering not only rewards but also
bona fide informational factors (2, 7–9, 13). However, we lack
behavioral paradigms that can be used with animals and can clearly
dissociate neuronal signals of instrumental information from those
of expected reward gains, or furnish an understanding of neural
signals related to these factors.
Here we address this question by examining the activity of target

selective cells in the monkey lateral intraparietal area (LIP), a
cortical area implicated in the top-down control of attention and
gaze (3, 14). LIP neurons are particularly appropriate for this in-
vestigation, because they integrate multiple factors relevant for
deciding where to allocate attention and gaze, and are sensitive to
the expected reward values of alternative gaze locations (11, 15–22).
To determine whether LIP target-selective cells are also sensitive

to expected gains in information, we used a two-step decision task
in which the monkeys made a first rapid eye movement (saccade)
to sample information from a visual cue, and a second saccade to
select an action based on that information. We focus on the re-
sponses before the first information sampling saccade, and show
that they encode the gains in information that the saccade was
expected to bring, in a manner that is independent of the cumu-
lative future rewards and reward prediction errors (RPEs) associ-
ated with the informative cues. Thus, parietal cortical neurons
involved in active sensing decisions encode bona fide information-
based decision variables that can guide the judicious sampling of
action-relevant cues.

Significance

We examine how the brain guides active sensing in awake,
behaving primates using a paradigm in which information
sampling is dissociated from reinforcement variables, such as
cumulative future reward or reward prediction errors. We
show that target selective cells in lateral intraparietal cortex
encode decision variables based on expected gains in in-
strumental information—the extent to which a visual cue,
when discriminated, is expected to reduce the uncertainty of
a subsequent action.
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Results
Two monkeys (Macaca mulatta) were trained on a task in which
they made two saccades on each trial—a first saccade to obtain
information from a visual cue, and a second saccade to report a
decision based on that information (Fig. 1A). In each trial, after
achieving central fixation, the monkeys had a 500-ms delay period
during which they viewed a visual display containing two cues
(round apertures containing small dots) and two targets (white
squares; Fig. 1A, first and second panels). At the end of this
period, the fixation point disappeared, and the monkeys had to
make a saccade to one of the cues. When the monkey’s gaze
arrived on the cue, the dots inside the chosen cue began to
move with 100% coherence toward one of the targets, indi-
cating which target was most likely to deliver a reward (Fig. 1A,
fourth panel, black arrows). After motion onset, the monkeys
were free to indicate their final decision by making a second
saccade to a target, and the trial ended with a reward or lack of
reward (see below).
Our interest was in the neuronal activity related to the decision

for the first saccade, which was made during the initial period of
central fixation, and expressed the monkeys’ choice of which cue
to sample (Fig. 1A, delay, second panel). Note that, during this
delay period, the cues did not yet deliver motion information, as
the dots inside both apertures were stationary. However, the

monkeys were informed about cue validity by means of a colored
border surrounding each cue. Validity was defined as the proba-
bility that the motion delivered by a cue would correctly specify
the rewarded final action, and could take values of 100%, 80%, or
55% (with the color-validity mapping held constant for each
monkey but randomized across monkeys; Methods). Therefore,
validity is a measure of how informative each cue was likely to be
for the choice of the subsequent action, and is mathematically
equivalent to two widely used measures of expected information
gains (EIG)—Shannon information and the maximum a posteriori
(MAP) estimate (Eqs. S1 and S2)—and we use “validity” and
“EIG” interchangeably in the paper. The task design, therefore,
separated neural activity related to the choice of an informative
item (based on peripheral validity information before the first
saccade) from activity associated with the sensory discrimination
(based on foveal motion information after the saccade).
When presented with free-choice trials containing two unequal

validity cues, both monkeys chose to inspect the higher-validity cue
with >90% probability, suggesting that they used a validity-based
sampling policy (each monkey, P < 0.0001 relative to 0.5; Fig. 1B).
After selecting a cue, the monkeys tended to obey its instruction
and choose the target that was congruent with the motion di-
rection. Consequently, the reward rates approached the maximum
expected rates in the task and, as expected in an instrumental
context, scaled with the validity of the chosen cue (Fig. 1C, two-
way ANOVA, P < 10−9 for the main effect of validity, P < 10−8 for
monkey, and P = 0.004 for monkey × validity interaction).

LIP Neurons Encode EIG. To examine the encoding of cue validity at
the level of individual cells, we identified individual target-
selective LIP neurons (Methods) and customized the display so
that, during the initial delay period, one of the cues fell inside the
receptive field (RF) of the recorded cell while the other stimuli
were outside the RF, allowing us to capture activity related to the
first saccade decision. Note that, after the delay period, the RF
of the cell moved away from the visual display by virtue of the
first saccade, and we could no longer observe meaningful re-
sponses to the second saccade or motion discrimination.
During the delay period before the first saccade, LIP neurons

(n = 50) had robust visual responses to the onset of the cues,
followed by sustained saccade-related responses that were higher
if the saccade was directed inside versus opposite the RF (Fig. 2A;
two traces in each panel). However, the directional response—the
difference in firing for the two directions—was not constant but
scaled as a function of the relative validity of the available cues
(Fig. 2A, compare across the three panels), suggesting that the
neurons multiplex visual and saccade-related responses with a
sensitivity to validity/EIG.
To quantitatively characterize the EIG response, we regressed

each neuron’s firing rates as a function of the validity of the RF
cue, the validity of the opposite RF cue, saccade direction, saccade
latency, saccade velocity, and saccade accuracy (Eq. S3). The
validity of the RF cue had a prominent effect in the early part of
the delay period (Fig. 2 B andC, 100 ms to 300 ms after cue onset),
with an average coefficient of 1.51 ± 0.2 (P < 0.0001, corre-
sponding to 12.08 spikes per second (sp/s) in terms of raw firing
rates). During this interval, the validity of the RF cue had a much
stronger effect than the validity of the opposite cue (orange;
−0.36 ± 0.11, P = 10−4) or saccade direction (green; 0.28 ± 0.17,
P = 10−6) and a much higher prevalence among individual cells
(with 72% showing significant encoding of the validity of the RF
cue, compared with only 16% for the opposite RF cue, 10% for
saccade direction, and 0%, 0%, and 2%, respectively, for saccade
velocity, latency, and accuracy; Fig. 2C, Left). During the later
delay period (300 ms to 500 ms), the average effect of saccade
direction increased and became comparable to that of cue validity
(direction, 1.08 ± 0.24 vs. validity, 0.85 ± 0.13, P = 0.68), consistent
with the fact that LIP neurons reflect oculomotor planning late in a

Fig. 1. Free-choice task and behavior. (A) Each trial began when the mon-
keys achieved fixation of a central spot (small black circle) placing the RF of an
LIP cell (dashed circle) on an eccentric screen location. (A representative RF
in the right hemifield is shown for illustrative purposes, but it was not visible to
the monkey during the experiment.) Two targets were then presented outside
the RF (white squares) followed by two cues, of which, one was inside the RF
and the other was at the diametrically opposite location (round apertures
containing small dots). The monkeys viewed the display for a 500-ms delay
period, after which the fixation point disappeared, and the monkeys made a
first saccade to one of the cues (freely chosen; third panel, red arrow). At the
end of this saccade, the chosen cue delivered its information in the form of
100% coherent dot motion directed toward one of the targets (fourth panel,
black arrows). After motion onset, the monkeys were free to indicate their final
decision by making a second saccade to a target (fourth panel, red arrows), and
the trial ended with a probabilistic reward [p(R)]. (B) The fraction of choices of
the optimal cue at the first saccade step, as a function of the difference in
validity of the available cues, for M1 and M2. The x axis shows the difference in
validity for the three possible pairs of unequal validity cues, and each point
shows the mean and SEM across all recording sessions. (C) The rates of reward
as a function of the validity of the chosen cue, in the same format as B.
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decision epoch (3). However, the validity response remained highly
prevalent, with 84% of cells showing significant sensitivity to the
validity of the RF cue, compared with 48% for saccade direction.
Further analysis verified that EIG modulations were robust in a

subset of the two-cue trials selected so as to differ only in the
validity of the RF cue but be matched for saccade direction and
the validity of the opposite cue (Fig. S1). Finally, model com-
parisons using Akaike and Bayesian Information Criteria (23)
showed that, among the set of all possible models based on the
regressors of interest, models that contained a term for the validity
of the RF cue provided a superior fit (Fig. S2). Together, these
findings suggest that LIP neurons robustly encoded the EIG of an
RF cue in combination with, but independently of, their previously
described responses to visual onsets, saccade planning, and com-
petitive normalization by non-RF cues.

EIG Is Encoded Independently of Expected Reward. Behavioral evi-
dence suggests that informational factors influence gaze allocation
during sensorimotor tasks, supporting the idea that the validity
responses we find encode EIG (24). However, an alternative
possibility is that these responses reflect reward expectation, be-
cause validity in an instrumental context is, by definition, corre-
lated with the reward probability of subsequent actions (Fig. 1C).
To distinguish between these possibilities, we compared the re-
sponses of a sample of LIP cells (n = 69, including the 50 cells
described in Fig. 2) to two types of RF stimuli that were equated
for reward expectation and differed in whether or not they
brought decision information.
We tested the neurons in two modified versions of the original

task, in which the stimulus appearing in the RF was, respectively,

informative or uninformative for the final action. The informative
condition was identical to the original two-cue task, with the ex-
ception that a single informative cue appeared inside the RF, and
monkeys were forced to sample the information conveyed by this
cue (Fig. 3A; forced choice, informative). The “uninformative”
condition was equivalent in all respects, except that the monkeys
received action and reward information from a precue, and the RF
cue delivered no additional information (Fig. 3B). Each trial in this
condition began with the presentation of a precue that was located
opposite the RF, had a colored border indicating validity, and
contained coherent motion toward one of the targets, thus sig-
naling the trial’s final target and reward probability (Fig. 3B, first
panel). After the precue was extinguished, a second uninformative
stimulus appeared in the RF, and, after a 500-ms delay, the mon-
keys made a first saccade to this stimulus, viewed random (0%
coherence) motion inside it, and made a second saccade to a target.
In the uninformative condition, therefore, the first saccade to

the RF cue was equated to that in the informative task in its di-
rection, timing, and reward expectation, and differed only in that it
was not expected to bring decision information. The equivalence
in reward expectation was ensured by the fact that, in the un-
informative condition, the saccade to the RF item was necessary
to harvest the reward, and reward probability was governed by the
validity of the initial precue. To ensure that reward associations
were consistent over longer time scales, we consistently paired
each type of uninformative item with a specific informative precue
(e.g., a red border uninformative item always followed a 55% valid
precue and hence had a ∼55% long-term reward expectancy,
whereas a cyan border uninformative item always followed an
80% valid precue, and thus had an ∼80% long-term expectancy;
Fig. 3B). (Note that, although monkey 1 (M1) performed the task
with all three pairs of yoked informative−uninformative cues,
monkey 2 (M2) was limited to pairs with a 55% and 80% precue
(Methods). We therefore focus our analysis on these two trial
types, which were tested in both monkeys (and separately analyze
the three-cue data from monkey M1).
To confirm that the informative and uninformative items had

equivalent reward value, we simulated a reinforcement learning
(RL) model that used the same state transitions and reward
contingencies as the behavioral task, and learnt the values of each
state by trial and error using a temporal difference algorithm (see
SI Methods). As shown in Fig. 3C (Left), the model predicts that
the value of the first saccade will depend on cue validity and that
this dependence will be identical for informative and uninforma-
tive items (Fig. 3C, two-way ANOVA, P < 10−10 for cue validity,
P > 0.8 for task type and interaction). This prediction follows from
the fundamental structure of model-free RL algorithms, in which
the final reward of an action sequence confers value to all previous
steps, subject to temporal discounting but impervious to infor-
mational factors (25, 26), and confirms that our task design ap-
propriately equated the reward values of informative and
uninformative items.
Contrary to model predictions, LIP neurons discriminated only

the validity of informative cues but not the reward associations of
uninformative items (Fig. 3C, “Data”). A two-way ANOVA
revealed significant effects of validity (P < 0.001) and validity ×
task interaction (P < 0.001) and, in post hoc comparisons, a sig-
nificant effect of validity for informative cues but not for un-
informative items (P < 0.001 vs. P = 0.6; average responses during
the period of peak modulation, 125 ms to 250 ms after cue onset).
A time-resolved regression analysis (Fig. 4 B and C and Eq. S4)

yielded average regression coefficients 3.4 ± 0.57 z-score (SD)
units for informative cues vs. 0.81 ± 0.39 z-score units for un-
informative stimuli (P < 0.0003), a result that was robust for each
monkey (M1, 3.4 ± 0.65 vs. 0.75 ± 0.44, P = 0.0013; M2, 3.57 ±
0.9 vs. 1.2 ± 0.6, P = 0.048). This difference was consistent at the
level of individual cells, where more than twice as many neurons
showed significant effects of validity than showed encoding of

Fig. 2. Quantitative analysis of EIG effects on two-cue trials. (A) Population
responses on two-cue trials in which the alternative cues had (Left) large,
(Center) medium, and (Right) low differences in validity, sorted according to
saccade direction (toward or opposite the RF). Throughout the paper, we use
gray, green, and blue to represent, respectively, 100%, 80%, and 55% valid
cues (although, in practice, the colors differed by monkey). Traces show mean
and SEM of activity across all of the cells (n = 50). Firing rates were z-scored for
each cell using the mean and SD across all correct trials (Methods), and can be
compared across all trial groups. (B) Time-resolved regression coefficients
(sliding window of 50-ms width, 1-ms step) estimating the effects of the validity
of the RF cue (Val InRF), the validity of the opposite RF cue (Val OppRF), and
saccade direction (Sac Dir), velocity, latency, and accuracy across the trials
shown in A. (C) Cumulative distribution of coefficients for individual cells in
200-ms bins spanning the early and late parts of the delay period.
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reward expectation (32/69 vs. 15/69 cells; P < 0.002, z = 3.05 test of
proportions; Fig. 4B, colormaps, and Fig. 4C). We further verified
that the sensitivity to cue type in the informative condition was
independent of saccade metrics (Fig. S3), was replicated when
reanalyzed in terms of the Shannon EIG (SEIG) (Fig. S3), and
was replicated in M1 using the three yoked pairs of informative
and uninformative cues (Fig. S4).
Note that, because the theoretical predictions pertain to the

relative rather than absolute response magnitudes, our analysis so
far has focused on the mean-subtracted neuronal activity, which
factors out the visual onset response and reveals the relative re-
sponses to the different levels of validity/reward expectation (Fig.
4A). Examination of the full (not mean-subtracted) responses

showed that the validity modulations rode on top of a visual onset
response that was strong for both informative and uninformative
cues and could be factored out by linear regression (Fig. S5A and
Eq. S4). Finally, analysis of the raw (not z-scored) responses
showed that the effects were very robust, with average regression
coefficients of 24.15 ± 0.57 sp/s for informative cues vs. 4.68 ±
1.2 sp/s for uninformative stimuli (P = 0.000008; Fig. S6 A and B).
Although the above results suggest that LIP neurons encode

EIG, it is important to rule out confounds based on spurious
differences between the informative and uninformative tasks. An
important concern is that, although our tasks nominally equated
reward expectations, variations in the monkeys’ performance may
have influenced the rewards that were de facto experienced for the
different cues. The latencies of the monkeys’ saccades to un-
informative items scaled inversely as a function of expected reward
(P < 0.01 in each monkey), confirming that the monkeys were
sensitive to expected reward even when making a saccade to an
uninformative item. However, the reward rate differences between
the 55% and 80% cues tended to be slightly higher for informative
cues relative to uninformative items (across all sessions—M1: in-
formative, 53.1 ± 0.7% vs. 76.3 ± 0.08%; uninformative: 54.7 ±
1.1% vs. 73.6 ± 1.0%, two-way ANOVA, P < 10−59 for validity,
P = 0.53 for condition and P = 0.008 for interaction; M2 in-
formative, 58.1 ± 2.6 vs. 77.3 ± 2.2%; uninformative, 51.6 ± 2.0%
vs. 61.1 ± 1.5%, two-way ANOVA, P < 10−4 for validity, P < 10−2

for condition and P = 0.045 for interaction). Two observations
show that this performance difference could not explain the
neuronal results. First, as documented above (Fig. 4B), the neu-
ronal validity effects were similar in the two monkeys despite their
different performance. Second, we found no correlation between
the experienced reward differential and the EIG modulations in
individual cells in either monkey for informative cues (Spearman
rank coefficient—M1, r = −0.1, P = 0.44; M2, r = 0.16, P = 0.68)
and, most importantly, for uninformative items (Fig. 5A; Spear-
man rank coefficient—entire sample r = −0.04, P = 0.76; M1,
r = −0.07, P = 0.61; M2, r = 0.34, P = 0.39). Finally, additional
regression analyses that incorporated terms for trial by trial reward
history (Eqs. S5 and S6) showed that the effects of prior trial
rewards were minimal and limited to the baseline period before
cue onset (Fig. 5B), ruling out artifacts related to the experienced
reward rates or reward history.
An additional concern is that variations in the monkeys’

postsaccadic motion viewing times may have affected trial length
and hence temporal discounting. However, viewing times were
considerably longer for informative relative to uninformative
cues in both monkeys (Fig. 5C; each monkey, P < 10−28), a
difference that is consistent with the informativeness of the dif-
ferent cues but contrary to an explanation in terms of temporal
discounting (according to which we should see weaker neural
modulations for informative cues, due to the greater discounting
associated with these cues). On a trial by trial basis, presaccadic
firing rates were not sensitive to postsaccadic viewing times,
further arguing against confounds related to the postsaccadic
viewing or motion discrimination (Fig. 5D and Eq. S7).
Finally, we considered potential effects of task geometry, related

to the fact that, in the uninformative condition, attention had to be
reoriented toward the RF after having been engaged by a precue at
the opposite location (Fig. 3B). As shown in Fig. S5A, reorienting
was associated with a slight enhancement of the visual response in
our sample of cells (compare gray traces for informative and un-
informative items), consistent with previous results (27), but the
magnitude of this enhancement was not correlated with the neu-
rons’ validity/reward modulations (Fig. S5C, black dots).
Together, these findings rule out spurious explanations related

to the complexities of double-step tasks, and suggest that LIP
neurons encode EIG independently of reward expectations.

Fig. 3. The informative/uninformative stimulus test. (A) Trial stages in the
informative and uninformative task. The Informative task was identical to the
cue choice task except that a single cue appeared in the RF, forcing the mon-
keys to complete the trial based on this cue. (B) In the uninformative condition,
a precue containing moving dots appeared opposite the RF simultaneous with
target onset, and conveyed both the reward probability of the trial (by virtue
of its colored border) and the instruction about the final action (through the
dot motion; first panel). The precue then disappeared and was replaced by an
uninformative stimulus inside the RF (second panel). After an additional
500-ms delay period, the monkeys were required to make a saccade to the RF
stimulus (third panel) before making their final saccade to a target (fourth
panel). Note that, although the uninformative stimulus delivered no in-
formation (but only random, 0% coherence motion), a saccade to this stimulus
was still valuable because it was necessary to obtain the reward. As depicted
by the cartoon at the bottom of B, we used two types of uninformative stimuli,
which were distinguished by the color of their borders and were each paired
with a constant informative precue to establish long-term reward associations.
Throughout the paper, we depict the uninformative stimulus that followed a
55% valid precue in red and the stimulus that followed an 80% valid precue
in cyan (although in practice the colors were randomized for each monkey).
(C) (Left) A standard model-free RL simulation (SI Methods) predicts that cue
value scales as a function of validity, and that this scaling is identical for the
uninformative stimuli. Note that the model predictions refer to the relative
modulations across the different cues, but the absolute Q values are arbitrary.
(Right) LIP responses to the informative and uninformative items (mean and
SEM of the traces shown in Fig. 4A, averaged across 125 ms to 250 ms after cue
onset). (**P < 0.001; two-way ANOVAwith pairwise post hoc comparisons; n.s.,
P = 0.6). Although the model predicts identical value scaling for informative
and uninformative items, LIP neurons show much stronger scaling for the in-
formative cues.
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EIG Is Distinct from Reward Prediction Errors. Although, in EIG Is
Encoded Independently, we considered an explanation in terms of
cumulative future rewards—the payoffs that an agent can expect
to receive after taking an action—an additional question is
whether our findings can be explained in terms of RPE, defined as
a change in reward expectation relative to a prior state (28). Even
though previous investigations have not tested whether LIP neu-
rons are sensitive to RPEs, such a sensitivity could potentially ex-
plain the neurons’ lack of modulation for uninformative cues. In
the informative condition, the monkeys began each trial with a
prior reward expectation of ∼78% (based on the average reward
rates across the different validity cues), and the appearance of an
informative cue signaled an increase (for 100% validity), no change
(80% validity), or decrease (55% validity) in reward probability
relative to this prior expectation. However, the appearance of an
uninformative item did not alter prior beliefs (Fig. 3B), potentially
explaining the lack of neuronal modulation. To examine whether
the cells respond to RPE, we conducted an additional cue-change
test in which a first informative cue established the monkey’s initial
reward expectations and a second cue modified these expectations,
producing RPEs that were independent of cue validity.
The majority of trials in the cue-change task were identical to the

one-cue condition of the standard task (Fig. 3A), in that the
monkeys received a single cue opposite the cell’s RF and com-
pleted the trial based on the information they sampled in this cue.
In the remaining, critical 25% of trials, the initial cue disappeared
before the first saccade and was replaced with another informative
cue inside the RF; the monkeys viewed the second cue for an ad-
ditional 500 ms during central fixation, and completed the trial by
harvesting information from this cue (Fig. 6A). In these cue-change
trials, therefore, monkeys would form a reward expectation based
on the validity of the initial cue, and change these expectations,
producing an RPE, based on the second cue. Consider, for in-
stance, the subset of trials in which the initial cue had 100%, 80%,
or 55% validity, and was followed by a second cue of 80% validity
(Fig. 6A). Even though this second cue had constant validity, it
signaled different RPEs according to the validity of the initial cue
(i.e., −20%, 0%, and 25% after initial cues of, respectively, 100%,
0%, and 25% validity). RL model simulations (SI Methods) verified
that the RPEs in the cue-change task had equivalent magnitudes to
those associated with the informative cues (Fig. 6B). Therefore, if
LIP neurons encoded RPE, they should show significant modula-
tion in response to the 80% cue, which should be equivalent to the
response modulations across the informative cues.
Contrary to this prediction, the neurons modulated much more

strongly as a function of validity than as a function of RPE. Fo-
cusing again on the mean-subtracted firing rates to remove the
common visual response (Fig. 7A), we found a significant effect of
validity but not RPE (Fig. 6B, “Data,” two-way ANOVA, P <
0.0004 for validity and validity × task interaction; post hoc com-
parisons, P < 0.001 for validity, P = 0.87 for RPE). Regression
analysis (Eq. S8) confirmed that the cells had much stronger
modulations according to validity than according to RPE in each
monkey [Fig. 7B, Top; average coefficients 125 ms to 250 ms after
cue onset were 3.5 ± 0.57 for informative cues vs. 0.74 ± 0.3 for
RPE in the entire sample (n = 24, P < 0.0001); M1, 3.67 ± 0.7 vs.
0.91 ± 0.4, P < 0.002, n = 18; M2, 2.97 ± 0.9 vs. 0.23 ± 0.37; P <
0.024, n = 6]. Significant effects of validity and RPE were found in,
respectively, 15/24 vs. 5/24 cells (62.5% vs. 21%; z-test of pro-
portions, z = 2.3, P = 0.01).
Control analyses ruled out explanations based on spurious

factors. Reaction times for the first saccade showed a significant
reduction as a function of RPE (one-way ANOVA, P = 0.0001 in

Fig. 4. LIP neurons encode validity but not the cumulative future rewards
of uninformative cues. (A) (Left) Average firing rates (n = 69 cells) for 55% and
80% valid cues, and (Right) their yoked uninformative stimuli. To highlight the
cue-related modulation, firing rates were z-scored after subtracting the aver-
age activity for each stimulus class (we use the term “Excess” to indicate mean
subtraction). Error bars show SEM across cells. (B) Average regression coeffi-
cients for the validity/reward responses in (Left) informative and (Right) un-
informative trials for (Top) each monkey and (Bottom) each cell (colormaps).
Note that the regression coefficients estimate the size of the neural effects
across the entire validity range (50 to 100%) and are thus nearly twice as large
as the difference in responses between the 80% and 55% cues, which span only
half of this range. (C) Cell-by-cell comparison of validity and reward effects.
Each point shows the average validity/reward coefficients of one cell (125 ms to
250 ms), color coded according to its significance along the x and y axes. In the
marginal histograms, significant points are indicated by darker colors. Dotted
lines show sample means. Note that all of the cells were used to compute the
marginal histograms and the means indicated by the dotted lines, but one
outlier that had coefficients of 25.2 for informative cues and 11.4 for un-
informative cues was left out of the plot for clarity of presentation (this cell
came from M1 and can be seen on row 44 of B as showing very high modu-
lation for informative cues in analysis epoch). Recomputing the statistics with-
out this outlier did not change the results (both monkeys, average and SEM for
informative vs. uninformative cues: 3.1 ± 0.48 vs. 0.65 ± 0.36, P = 0.00035; M1,

3.0 ± 0.54 vs. 0.57 ± 0.41, P = 0.0015; both monkeys, z test of proportions for
the incidence of significant cells, z = 3.09, P = 0.001).

Foley et al. PNAS | Published online April 3, 2017 | E3319

N
EU

RO
SC

IE
N
CE

PN
A
S
PL

U
S

http://www.pnas.org/lookup/suppl/doi:10.1073/pnas.1613844114/-/DCSupplemental/pnas.201613844SI.pdf?targetid=nameddest=STXT
http://www.pnas.org/lookup/suppl/doi:10.1073/pnas.1613844114/-/DCSupplemental/pnas.201613844SI.pdf?targetid=nameddest=eqs8


each monkey), showing that the monkeys were sensitive to and
motivated by the RPE associated with the second cue. Second, we
controlled for the possibility that neurons only modulated for the
first step in an action sequence, by using an additional subset of
“change to self” trials where the first and second cues had equal
validity of 100%, 80%, or 55% (Methods). On these trials, the
neurons showed a significant modulation according to the validity
of RF cue (P < 0.0009), verifying that a validity response could be
elicited at the second step in a sequence. Finally, examination of
the full (not mean-subtracted) response showed that the neurons
had a robust visual response to the RF cues, which, similar to the
uninformative task, showed a slight enhancement due to reor-
ienting that was uncorrelated with the sensitivity to validity (Fig.
S5 B and C).
Together, the findings rule out spurious explanations, and

suggest that LIP neurons encode EIG independently of changes
in reward expectations.

Discussion
We show that, in a task in which monkeys could select which
stimulus to sample before choosing a final action, LIP neurons
encoded the expected gains in decision information associated
with alternative cues, and this encoding was distinct from the cells’
well-known visual, saccade, and reward modulations, and from an
encoding of RPE. Although replicating the essential features of
instrumental sampling requires relatively complex sequential
paradigms (10, 29), extensive analyses and control conditions
ruled out confounds that may arise in such paradigms. We discuss

the implication of the findings from the perspectives of the value-
based and priority-based interpretations of LIP function.

Value-Based Decisions. A prominent interpretation of the LIP
target selection responses is that they encode the relative reward
values of competing options, which can be read out by down-
stream mechanisms to select reward-maximizing action policies
(11, 22). Our results are broadly consistent with a decision-based
interpretation, as the responses we found provided a presaccadic,
validity-based ranking of the alternative cues that could guide the
decision of which cue to sample.
Our key finding, however, is that the ranking based on EIG

could not be explained by the reward mechanisms that have been
considered in previous investigations. LIP neurons are sensitive to
future rewards and are thought to encode the cumulative future
value of an action or state, consistent with the predictions of
model-free RLmechanisms (21, 30). In our task, however, the cells
distinguished between informative and uninformative items with
equivalent reward expectations, and did not modulate as a func-
tion of RPE [whose encoding is well established for DA cells (31,
32) but had not been investigated in LIP], indicating that they
encode the EIG of visual cues in a manner that is not captured by
model-free reinforcement mechanisms.
It is important to note that, although our findings imply that

expected rewards are not sufficient to explain the LIP response,
they leave open the possibility that rewards contribute to con-
structing this response. Indeed, a small fraction of the cells we
examined showed significant modulations for uninformative
stimuli and in the change-cue task, and may potentially encode

Fig. 5. Selective encoding of validity cannot be explained by task-related confounds. (A) Reward differentials. Each point represents one neuron. The y axis
shows the reward coefficient on uninformative trials, and the x axis shows the difference in the fractional rewards obtained for the 80% versus the 55%
uninformative stimuli during the recording of that neuron. The extent to which different neurons modulate for uninformative cues is not correlated with the
difference in the average rewards experienced for those cues across or within monkeys. (B) Regression coefficients (mean and SEM) dissociating the effects of
validity/reward and prior trial rewards (Eq. S5). During the 125- to 250-ms epoch of peak validity modulation, fewer than 10% of cells were significantly
modulated by the prior trial reward (seven and four, respectively, in the informative and uninformative conditions); this result was confirmed if we restricted
the history regressor to only include trials of the same cue type (Eq. S6) or added terms to capture the effects of up to three previous trials. (C) Distributions of
motion viewing times, showing longer times in the informative condition for both monkeys. In the uninformative condition, M1 shows a prominent peak at
100 ms, the minimum viewing time imposed by the experiment. (D) Regression coefficients (mean and SEM) showing that the presaccadic responses encode
the validity of informative cues but not the postsaccadic viewing times (Eq. S7).
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reward expectation and/or RPE, consistent with the integrative
nature of the LIP target-selective response (14, 33, 34).
Our conclusion that LIP neurons encode higher-order forms

of utility beyond simple reward expectation is consistent with two
previous studies demonstrating a sensitivity to values based on
social status (35) and the motivational salience of a punishment-
predicting cue (36). Interestingly, social status and motivational
salience identify stimuli that govern future actions, raising the
question of how social and motivational factors shape active
sensing policies.
Our findings raise important questions about how the brain may

compute EIG. One debated question is whether EIG estimates rely
on explicit measures of uncertainty (37) or higher-order effects of
rewards [such as convex utility function or nonstandard effects of
RPE that have yet to be characterized in individual cells (38–40)].
A second key question is whether EIG is computed dynamically
based on the uncertainty of each forthcoming action or relies on
long-term estimates of average validity. A dynamic “look ahead”
mechanism affords high flexibility, but it may be computationally

expensive and may not be used consistently in all behavioral con-
texts (10, 29). An important question for future research is to what
extent EIG computations are flexible and responsive to rapid
changes in context, or rely on stored validity representations to
produce routine-based sampling policies (13, 41, 42).
What benefits might the brain derive from computing a

reward-independent response to EIG, given that information

Fig. 6. Validity responses cannot be explained by RPE. (A) Trial stages for
the cue-change trials. All conventions are as in Fig. 3A. The monkeys first
viewed an informative cue, which had stationary dots but a known validity
(border color), and appeared simultaneously with the targets, opposite the RF
(“Fixation”). On the cue-change trials depicted here (which were 25% of all
trials), the initial cue was replaced with a different RF cue. Thereafter, the trial
proceeded identically to the one-cue informative condition, with a 500-ms
delay period, followed by a saccade to the RF cue and a second saccade to a
target. Note that the first cue never delivered its motion instruction; its pur-
pose was to establish an initial reward expectation (by virtue of its validity),
which could be modified by the second cue, producing an RPE. (B) (Left) RL
simulations confirm that informative cues were associated with RPEs that were
proportional to their validity (“Informative”). Cues of 80% validity that
appeared on cue-change trials (“Cue Change”) were associated with similar
RPEs by virtue of following an initial cue of 55%, 80%, or 100% validity. The
bars show mean and SEM of simulated RPEs, z-scored across all conditions.
Green bars for the cue-change condition are arranged in order of RPE. (Right)
LIP responses modulated for informative cues but not 80% valid cues with
matched RPE. The bars show the mean and SEM of the mean-subtracted,
z-scored firing rates shown in Fig. 7A, averaged across the interval of peak
effect (125 ms to 250 ms after cue onset) and all 24 cells tested in this task.
(**P < 0.001; two-way ANOVA with post hoc comparisons; n.s., P = 0.87).

Fig. 7. Neural responses on the reward change test. (A) Average firing rates
for (Left) valid cues and (Right) 80% cues with matched RPEs (n = 24 cells). To
highlight the cue-related modulation, firing rates were z-scored after sub-
tracting the average activity for each stimulus class (the term “Excess” in-
dicates mean subtraction). The legends in each panel show the validity of the
informative cues and the equivalent RPEs for the 80% cues on cue-change
trials. (B) Average regression coefficients for the validity/reward change re-
sponses for (Top) each monkey and (Bottom) individual cells (colormaps).
(C) Paired comparison of the validity and RPE effects in individual cells. All
conventions are as in Fig. 4.
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sampling must ultimately support reward maximization? One
possible answer to this question comes from studies of cognitive
control, which suggest that actions that require attentive control
are those associated with new information, whereas actions that
have low uncertainty are habitual and can be performed with
little attention (43–45). This implies that the brain must triage
cognitive effort according to not only future rewards but also the
informational demands of a situation, requiring a reward-
independent sensitivity to EIG.
A second answer to this question comes from the fact that the

rewards associated with sampling are very indirect and, as was
the case in our task, contingent on postsampling actions. In many
conditions, the postsampling decisions may be quite complex (2,
41), and their rewards may be ambiguous or fully unknown [as in
curiosity-based exploration (6)]. In such complex conditions, the
brain may derive a significant advantage from computing de-
cision variables over shorter time scales, related to reducing the
uncertainty of a proximate action.

Attention and Gaze. A second common interpretation of the LIP
target selection response is in terms of a “priority” map that ranks
competing visual cues for saccades or attention (14, 33, 46–52).
Similar to the value interpretation, the priority hypothesis de-
scribes LIP as encoding a common currency for visual selection.
However, the priority hypothesis goes beyond the value frame-
work in making the specific proposal that LIP cells provide to-
pographically organized attentional feedback facilitating early
sensory discrimination (14, 53).
The EIG modulations we found cannot be explained by a

number of previously described attention/priority effects. First,
these modulations cannot provide topographically organized at-
tentional feedback, as they were not aligned in time or space with
the perceptual discrimination: Although the EIG responses de-
scribed a cue at a peripheral location before the saccade, the mo-
tion discrimination occurred at a foveal location after the saccade.
In addition, EIG responses were uncorrelated with reorienting of
spatial attention (27) or saccade motor factors.
Within the priority framework, our results are broadly con-

sistent with the idea that LIP cells encode “relevance” or “top-
down” target selection (14, 54). However, it is important to note
that no studies, whether at the level of neural responses or in the
behavioral/computational literatures, have attempted to give a
computational definition of this form of selection, producing
great difficulties in our ability to model top-down attention and
gaze (41, 55). A key contribution of our results, therefore, is that
they reveal a specific neural signal of task relevance based on
expected gains in decision information, making these signals
amenable to computational modeling in future investigations.

Methods
Data were collected from two adult male rhesus monkeys (M. mulatta) using
standard techniques (56), approved by the Animal Care and Use Committees
of Columbia University and New York State Psychiatric Institute as complying
with the guidelines within the Public Health Service Guide for the Care and
Use of Laboratory Animals. Eye position was recorded with Applied Science
Laboratories eye tracking system digitized at 240 Hz. Visual stimuli were
presented at 57 cm viewing distance on a Sony GDM-FW900 Trinitron
monitor (viewing area of 30.8° by 48.2°), and their onset was measured by a
diode that detected the onset of a refresh cycle.

Task. For all of the task versions, cues and uninformative stimuli were round
patches that measured 3.5° in diameter and contained small dots (0.2°), and
the targets were small squares of 0.4° on a side. Cues of different validity
correctly indicated the rewarded target on, respectively, 100%, 80%, and 55%
of trials and signaled the erroneous target on the remaining, randomly in-
terleaved trials. The three validities were signaled with equiluminant gray,
blue, and green borders, with validity-color mappings held constant for each
monkey and randomized across monkeys. The display was adjusted for each
LIP cell so that, when the monkeys held central fixation, one of the cues fell
inside the RF (typically at eccentricities of 8° to 12°) while the other cue was at

the diametrically opposite location, and the two targets were at equal ec-
centricities around an axis orthogonal to that linking the cues (also outside the
RF). To ensure that the monkeys used the motion to guide their second sac-
cade, we imposed minimum motion viewing times before making the second
saccade (100 ms for M1, and 100 ms to 300 ms for M2). Rewards, if given,
arrived at a fixed interval of 200 ms after the end of the second saccade.

Each trial beganwhen themonkeys achievedandmaintained central fixation
for 400ms to 600ms. After this interval, the two targets appeared, on their own
on standard informative trials (Figs. 1A and 3A, first panels), or simultaneous
with the opposite-RF precue on uninformative and change-cue trials (Figs. 3B
and 6A, first panels). The target/precue period lasted 300ms for M1 and 350ms
for M2, and was followed by the appearance of the RF cues, the 500-ms delay
period, and the two-saccade sequence as described in Results. Therefore, the
three task versions differed only in whether or not a precue appeared together
with the targets, while the timing was identical across the different tasks. In
the two-cue choice task (Fig. 1A), trials with the three possible pairs of cues
with unequal EIG were presented in random order, with the location of the
higher-validity cue randomized to fall inside or opposite the RF.

In the uninformative cue condition (Fig. 3B), initial testing showed that
the monkeys had difficulties performing single-cue informative and un-
informative trials if these were interleaved. In addition, M2 had relatively
low performance for the 100% valid cue (even though he reliably selected
this cue on free-choice trials; Fig. 1B). To compensate for these difficulties
and minimize reward confounds associated with performance differences
across the two tasks, we ran the single-cue informative and uninformative
trials in short interleaved trial blocks (collecting at least 10 completed trials
for each condition and randomizing the order of the blocks), and based the
analysis on the 55% and 80% valid cues that were tested in both monkeys.

In the cue-change task (Fig. 6), it was necessary for the monkeys to believe
that the initial cue signaled reward probability on most trials, which meant
that we had to maintain a low frequency of cue-change trials, which we set
at 25%. This low frequency, in turn, prevented us from exhaustively exam-
ining all of the nine possible combinations of the first and second cues, and
we decided to focus on the five sequences that were most relevant for our
purposes. These were sequences in which the first cue had validity of 100%,
80%, or 55% and the second, RF, cue had validity of 80%, and two more
sequences in which the first and second cues had equal validities of 100%
and 55%. These trial types allowed us to test whether the responses to an
80% RF cue modulated according to the reward expectations set by a prior
cue (Fig. 6A) and how neurons responded to cues that had different val-
idities but zero RPE (100, 100%; 80, 80%; and 55, 55%). These five types of
cue-change trials appeared with equal probability and were randomly in-
terleaved with no-change trials. A block continued until at least five trials
were completed for each trial type.

Neural Recordings. Single electrodes were advanced into the intraparietal
sulcus (IPS) using a Kopf Microdrive (David Kopf Instruments), and the data
were recorded using the Advanced Processing Module for neural signal re-
cording Fred Haer (FHC, Inc.), and MatLab (MathWorks) and Mathematica
(Wolfram) were used for off-line data analysis.

Neurons were identified as belonging to LIP based on accepted anatomical
and physiological criteria. We used structural MRI to guide electrode
placement to the appropriate level of the IPS and, during recordings, re-
stricted our recordings depths to 3 mm to 8 mm below the cortical surface. At
the end of the recordings, we acquired a final structural MRI with electrodes
inserted at the anterior and medial margins of the region from which we had
obtained cells, and found that the trajectories of these electrodes were fully
in the lateral bank. Thus, we can be confident that all of the other recording
locations—which were posterior and lateral to these landmarks—were also
in the lateral bank. For physiological verification, we screened each isolated
cell and only tested it further if it had significant, spatially tuned delay pe-
riod activity during a memory-guided saccade task (one-way ANOVA, P < 0.05).
These well-established criteria conclusively distinguish LIP from neighboring
areas that are located in the medial bank of the IPS (medial intraparietal area),
on the lateral cortical surface (7a), or at the bottom of the IPS (ventral intra-
parietal area), and which have visual and postsaccadic responses but much
weaker delay period activity before memory-guided saccades (57, 58). Note
also that, because we were biased toward recording cells with high delay
period activity, we cannot speak to any correlations (or lack thereof) that may
exist between this activity and validity modulations.

Data Analysis. Analysis was based on 69 well-isolated neurons (40 in M1) that
were tested in the one-cue informative/uninformative task, of which 50 were
also tested with the two-cue task, and 24 were tested with the cue-change
task. Incomplete trials (in which the monkey did not make a second saccade)
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were removed from the analysis. Complete trials were analyzed whether or
not they received a reward. Saccades were analyzed using a velocity-based
algorithm (59), and saccade onset was calculated from the earliest sample
of continuous acceleration. All statistical analyses were preceded by tests of
normality and symmetry (P < 0.05). If the data met the criteria of normality
and symmetry, a paired-sample t test was used. If only the symmetry crite-
rion was met, a Wilcoxon-signed-rank test was used. If neither criterion was
met, a Mann−Whitney u test was computed.

Analysis of the neural responses was always conducted on unsmoothed
rates. Time-resolved regression analyses were computed using standardized
coefficients, on firing rates measured in a 50-ms window stepped by 1 ms
throughout the delay period. For graphical displays, the value for each time
bin was plotted in the middle of the 50-ms window (e.g., 0 ms to 50 ms is
plotted at 25 ms). Note that the coefficients are signed (not converted to
absolute values), and thus a positive coefficient indicates a true coding of that
parameter (rather than spurious effects that may masquerade as positive
coding if absolute values are taken). For display purposes only, firing rates
were convolved with the right half of a Gaussian kernel of 20 ms SD that was
centered on the true spike time, smearing the signal only forward in time.

Our main analyses are based on z-scored firing rates, which normalizes for
overall differences in firing levels across cells. However, we obtained equiva-
lent results using nonnormalized rates (Fig. S6). To z-score firing rates within a
cell, we computed the average firing rate in each trial obtained from that cell,
measured from the time of fixation point onset to the end of the trial
(∼200 ms after the end of the reward period). We then computed the mean
and SD of these firing rates across all of the trials that were included in a given
analysis, and transformed the trial by trial firing rate by subtracting the mean
and dividing by the SD of this distribution. Individual trial z scores were av-
eraged for a cell and then averaged across all cells to obtain the average and
SEs of the population response.
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